Sains Malaysiana 53(1)(2024): 23-37
http://doi.org/10.17576/jsm-2024-5301-03
Tripartite
Introductions of PGPR, Humic Acid, and N-Fertilizer
Improve the Growth and Yield of Sweet Potato under Glasshouse Conditions
(Pengenalan Tripihak PGPR, Asid Humik dan Baja N Meningkatkan Pertumbuhan dan Hasil Ubi Keledek di bawah Keadaan Rumah Kaca)
BURAQ
MUSA SADEQ1, ALI TAN KEE ZUAN1,*,
SUSILAWATI KASIM1, JAWADYN TALIB ALKOORANEE2, WONG MUI
YUN3, NUR MAIZATUL IDAYU OTHMAN4,
AMAILY AKTER1, SAYMA SERINE CHOMPA1, ABBA NABAYI5 & MD EKHLASUR RAHMAN1,6
1Department
of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department
of Plant Protection, Faculty of Agriculture, University of Wasit, Wasit, Iraq
3Department
of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA,
Melaka, Kampus Jasin 77300 Merlimau, Melaka, Malaysia
5Department of Soil
Science, Faculty of Agriculture, Federal University Dutse,
Nigeria. PMB 7156, Ibrahim Aliyu bye-pass Jigawa state, 720101, Nigeria
6Divisional Laboratory,
Soil Resource Development Institute, Krishi Khamar Sharak, Farmgate, Dhaka-1215, Bangladesh
Received:
17 April 2023/Accepted: 4 December 2023
Abstract
This study was
undertaken to investigate the effects of plant growth-promoting rhizobacteria (PGPR) with humic acid (HA) as amendments on the morphological and physiological growth
characteristics and yield of Sepang Oren sweet potato (Ipomoea batatas[L.] Lam). The experiment was
conducted under glasshouse conditions at the Faculty of Agriculture, Universiti Putra Malaysia, for 110 days. Two factors were
used in this experiment: The first factor was PGPR-HA inoculations (UPMB10,
UPMRB9, and mixed strains) and non-inoculation-HA, and the second factor was
the Nitrogen fertilizer levels (50, 75, and 100%). The treatments were
replicated three times and arranged factorially in a
randomized complete block design. The results showed that inoculations with
PGPRs-HA (UPMRB9 and UPMB10 strains) positively affect the plant growth
significantly (SPAD measurements, number of leaves, vine length, root length,
leaf area index, root dry weight, shoot dry weight, and root: shoot ratio) of
sweet potato upon addition of 50% and 75% of N-fertilizer, respectively. The
nutrient content of soil and plant leaf significantly increased by 12-15% and
14-18%, respectively, compared to the uninoculated,
when applied with the same inoculation. After 30 days, the population of soil
bacteria increased, reaching a value of 8.65 log10 CFU/g soil. The
use of PGPR-HA inoculations with N-fertilization resulted in a considerable
rise in the majority of plant and soil parameters compared to the treatments
without PGPR inoculation. Therefore, PGPR supplemented with humic acid (HA) may be considered a viable and sustainable
strategy for enhancing sweet potatoes' morphological and physiological
attributes. This technique can result in increased crop productivity and serve
as a substitute for nitrogen-based fertilizers.
Keywords: Bacterial
population; humic acid (HA); PGPR; soil nutrients; sweet
potato yield
Abstrak
Penyelidikan
ini dijalankan untuk mengkaji kesan rizobakteria penggalak pertumbuhan
tumbuhan (PGPR) dengan asid humik (HA) sebagai pindaan terhadap ciri
pertumbuhan morfologi dan fisiologi serta hasil ubi keledek Sepang Oren (Ipomoea
batatas [L.] Lam). Uji kaji dijalankan di bawah keadaan rumah kaca di
Fakulti Pertanian, Universiti Putra Malaysia, selama 110 hari. Dua faktor telah
digunakan dalam uji kaji ini: Faktor pertama ialah inokulasi PGPR-HA (UPMB10,
UPMRB9 dan strain campuran) dan bukan inokulasi-HA serta faktor kedua ialah
kepekatan baja Nitrogen (50, 75 dan 100%). Setiap rawatan mengandungi tiga
replikasi dan disusun secara faktorial dalam reka bentuk blok lengkap rawak.
Hasil menunjukkan bahawa inokulasi dengan PGPRs-HA (strain UPMRB9 dan UPMB10)
memberi kesan positif kepada pertumbuhan tumbuhan dengan ketara (ukuran SPAD,
bilangan daun, panjang pokok, panjang akar, indeks luas daun, berat kering
akar, berat kering pucuk dan nisbah akar: pucuk) ubi keledek selepas penambahan
50% dan 75% baja N. Kandungan nutrien tanah dan daun tumbuhan masing-masing
meningkat dengan ketara sebanyak 12-15% dan 14-18% berbanding dengan tumbuhan
yang tidak diinokulasi. Selepas 30 hari, populasi bakteria tanah meningkat,
mencapai nilai 8.65 log10 CFU/g tanah. Penggunaan inokulasi PGPR-HA
dengan pembajaan N menghasilkan peningkatan yang ketara dalam majoriti
parameter tumbuhan dan tanah berbanding dengan rawatan tanpa inokulasi PGPR.
Oleh itu, PGPR Bersama-sama asid humik (HA) boleh dianggap sebagai strategi
yang mampan untuk meningkatkan sifat morfologi dan fisiologi ubi keledek.
Teknik ini boleh menghasilkan peningkatan produktiviti tanaman dan berfungsi
sebagai pengganti baja berasaskan nitrogen.
Kata kunci: Asid humik (HA); hasil
ubi keledek; nutrien tanah; PGPR; populasi bakteria
REFERENCES
Abdelrahman, H.M., Zaghloul, R.A.,
Hassan, E.A., El-Zehery, H.R.A. & Salem, A.A.
2021. New strains of plant growth-promoting rhizobacteria in combination with humic acid to enhance squash
growth under saline stress. Egyptian Journal of Soil Science 61(1):
129-146.
Agbede, T.M. & Oyewumi, A. 2022. Benefits of biochar, poultry manure and biochar–poultry
manure for improvement of soil properties and sweet potato productivity in
degraded tropical agricultural soils. Resources, Environment and
Sustainability 7: 100051. https://doi.org/10.1016/j.resenv.2022.100051
Ahmad, S., Daur, I., Al-Solaimani,
S.G., Mahmood, S., Bakhashwain, A.A., Madkour, M.H. & Yasir, M.
2016. Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) crop. Pakistan Journal of Botany 48:
2109-2120.
Al-Taey,
D.K., Al-Shareefi, M.J., Mijwel,
A.K., Al-Tawaha, A.R. & Al-Tawaha,
A.R. 2019. The beneficial effects of biofertilizers combinations and humic acid on growth, yield
parameters and nitrogen content of broccoli grown under drip irrigation
system. Bulgarian Journal of Agricultural Science 25(5):
959-966.
Ashwini, N., Kumar, P., Joshi, A.K., Sharma, N.C., Sharma, N.
& Sharma, N. 2022. Synergistic action of humic acid substances and bio-inoculants in guava (Psidium guajavaL.): Impact on growth traits, fruiting,
nutrient profiling and rhizosphere stochiometry in
meadow rainy season plant-soil interface. Journal of Plant Nutrition 46(4): 574-588.
Baard, V., Bakare, O.O., Daniel, A.I., Nkomo, M., Gokul, A., Keyster, M. & Klein, A. 2023. Biocontrol potential of Bacillus
subtilis and Bacillus tequilensis against
four fusarium species. Pathogens 12(2):
254.
Bashan, Y., de-Bashan, L.E., Prabhu, S.R. &
Hernandez, J.P. 2014. Advances in plant growth-promoting bacterial inoculant
technology: Formulations and practical perspectives (1998-2013). Plant
and Soil 378: 1-33.
Bahadur, I., Maurya, B.R., Meena,
V.S., Saha, M., Kumar, A. & Aeron, A. 2017.
Mineral release dynamics of tricalcium phosphate and
waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiology Journal 34(5): 454-466.
Benz, M., Schink, B. & Brune,
A. 1998. Humic acid reduction by Propionibacterium freudenreichii and other fermenting
bacteria. Applied and Environmental Microbiology 64:
4507-4512.
Bowman, D.C., Paul, J.L. & Carlson, R.M. 1988. A method to exclude
nitrate from Kjeldahl digestion of plant
tissues. Communications in Soil Science and Plant Analysis 19:
205-213.
Chen,
X., Kou, M., Tang, Z., Zhang, A. & Li, H. 2017. The use of humic acid urea
fertilizer for increasing yield and utilization of nitrogen in sweet
potato. Plant, Soil and Environment 63(5): 201-206.
Çığ, F., Sönmez, F., Nadeem, M.A. & Sabagh, A.E. 2021. Effect of biochar and PGPR on the growth and nutrients content of einkorn wheat (Triticum monococcumL.)
and post-harvest soil properties. Agronomy 11: 2418.
Egamberdiyeva, D. & Höflich, G. 2004.
Effect of plant growth-promoting bacteria on growth and nutrient uptake of
cotton and pea in a semi-arid region of Uzbekistan. Journal of Arid
Environments 56(2): 293-301.
Ekin, Z. 2020. Co-application of humic acid and bacillus strains enhances seed and oil yields by mediating nutrient
acquisition of safflower (Carthamus tinctoriusL.) plants in a semi-arid region. Applied
Ecology and Environmental Research 18: 1883-1900.
Ekin, Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to
ensure higher potato productivity in sustainable agriculture. Sustainability 11(12): 3417.
El-Sawah, A.M., El-Keblawy,
A., Ali, D.F.I., Ibrahim, H.M., El-Sheikh, M.A., Sharma, A. & Sheteiwy, M.S. 2021. Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed
yield, and qualitative attributes of guar. Agriculture 11:
194.
Etesami, H., Alikhani, H.A. & Mirseyed Hosseini, H. 2015. Indole-3-acetic acid and
1-aminocyclopropane-1-carboxylate deaminase: Bacterial traits required in
rhizosphere, rhizoplane and/or endophytic competence
by beneficial bacteria. Bacterial Metabolites in Sustainable
Agroecosystem. Sustainable Development and Biodiversity, vol 12, edited by Maheshwari,
D. Springer, Cham. pp. 183-258.
Folina, A., Tataridas, A., Mavroeidis,
A., Kousta, A., Katsenios,
N. & Efthimiadou, A. 2021. Evaluation of various
nitrogen indices in N-Fertilizers with inhibitors in field crops: A
review. Agronomy 11: 418.
Goswami, D., Thakker, J.N. & Dhandhukia,
P.C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture 2(1): 1127500.
Gupta, S., Stirk, W.A., Plačková,
L., Kulkarni, M.G., Doležal, K. & Van Staden, J. 2021. Interactive effects of plant
growth-promoting rhizobacteria and a seaweed extract
on the growth and physiology of Allium cepa L.
(onion). Journal of Plant Physiology 262: 153437.
Huang, X.F., Chaparro, J.M., Reardon, K.F., Zhang, R., Shen, Q. & Vivanco, J.M. 2014. Rhizosphere interactions: Root
exudates, microbes, and microbial communities. Botany 92(4):
267-275.
Itelima, J.U., Bang, W.J., Onyimba,
I.A., Sila, M.D. & Egbere,
O.J. 2018. Bio-fertilizers as key player in enhancing soil fertility and crop
productivity: A review. Direct Research Journal of Agriculture and Food
Science 6(3): 73-83.
Kapadia, C., Sayyed, R.Z., El Enshasy, H.A., Vaidya, H., Sharma, D., Patel, N. & Zuan, A.T.K. 2021. Halotolerant microbial consortia for
sustainable mitigation of salinity stress, growth promotion, and mineral uptake
in tomato plants and soil nutrient enrichment. Sustainability 13: 8369.
Karim, N.A., Devarajan, T. & Ahmad, A. 2022. Principal component
analysis for phenotypic characterization of sweet potato (Ipomoea batatas(L.) Lam.) genotypes in Malaysia. Trends
in Sciences 19: 4612.
Kashiani, P. 2012. Genetic potential of selected sweet corn inbred lines and
analysis of their combining ability assisted by microsatellite DNA markers.
Doctoral dissertation. Universiti Putra Malaysia
(Unpublished).
Kamali, S.R., Tsai, C.H. & Chen, C.N. 2021. Comparison of three
digestion methods for determination of selenium in green tea samples using
fluorescence spectrometry. IOP Conference Series: Earth and Environmental
Science 712(1): 012016. doi:10.1088/1755-1315/712/1/012016
Kaur, T., Devi, R., Kumar, S., Sheikh, I., Kour,
D. & Yadav, A.N. 2022. Microbial consortium with nitrogen fixing and
mineral solubilizing attributes for growth of barley (Hordeum vulgareL.). Heliyon 8(4):
e09326.
Khan, Z., Rahman,
M.H.U., Haider, G., Amir, R., Ikram,
R.M., Ahmad, S., Schofield, H.K., Riaz, B., Iqbal,
R., Fahad, S., Datta, R., Baazeem,
A., El Sabagh, A. & Danish, S. 2021. Chemical and
biological enhancement effects of biochar on wheat
growth and yield under arid field conditions. Sustainability 13(11):
5890.
Laftah, S.K. & Alabdulla, S.A.
2022. Response of some growth traits of safflower (Carthamus tinctoriusL.) to spray with humic acid under levels of phosphorus fertilizer. IOP Conference Series: Earth and
Environmental Science 1060(1): 012115.
Mabrouk, Y., Hemissi, I., Salem, I.B., Mejri,
S., Saidi, M. & Belhadj,
O. 2018. Potential of rhizobia in improving nitrogen fixation and yields of
legumes. Symbiosis 107: 73495.
Mahapatra, S., Yadav, R. &
Ramakrishna, W. 2022. Bacillus subtilis impact on plant growth, soil
health and environment: Dr. Jekyll and Mr. Hyde. Journal of Applied
Microbiology 132(5): 3543-3562.
Manna, M.C., Rahman, M.M., Naidu, R., Bari, A.F., Singh, A.B., Thakur,
J.K. & Subbarao, A. 2021. Organic farming: A
prospect for food, environment and livelihood security in Indian
agriculture. Advances in Agronomy 170: 101-153.
Meena, K., Ram, R.B., Meena, M.L., Meena, J.K. & Meena, D.C.
2017. Effect of organic manures and bio-fertilizers on growth, yield and
quality of broccoli (Brassica oleraceavar.)
cv. KTS-1. Chemical Science Review and Letters 6: 2153-2158.
Meng, F., Huang, Q., Yuan, G., Cai,
Y. & Han, F.X. 2021. The beneficial
applications of humic substances in agriculture and
soil environments. In New Trends in Removal of Heavy Metals from
Industrial Wastewater, edited by Shah, M.P., Couto,
S.R. & Kumar, V. Elsevier. pp. 131-160.
Moreira, B.C., Prates Júnior,
P., Dell, B. & Kasuya, M.C.M. 2022. Roots and beneficial
interactions with soil microbes. In Subsoil Constraints for Crop
Production, edited by Oliveira, T.S.D. & Bell, R.W. Springer, Cham. pp.
263-287.
Mosharrof, M., Uddin, M., Sulaiman, M.F., Mia, S., Shamsuzzaman,
S.M. & Haque, A.N.A. 2021. Combined application
of biochar and lime increases maize yield and
accelerates carbon loss from an acidic soil. Agronomy 11(7):
1313.
Muhammad, R., Nor,
N.M., Ikram, E.H.K. & Sharif, M.S.M. 2022.
Sustainability of underutilized local crop through product development of
Malaysia purple sweet potato cracker. Malaysian Journal of
Medicine & Health Science 18: 305-314.
Neela, S. & Fanta, S.W. 2019. Review on nutritional composition of
orange‐fleshed sweet potato and its role in management of vitamin A
deficiency. Food Science & Nutrition 7: 1920-1945.
Prasad,
R., Kumar, M. & Varma, A. 2015. Role of PGPR in soil
fertility and plant health. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, edited by Egamberdieva, D., Shrivastava, S.
& Varma, A. Soil Biology, vol. 42. Springer, Cham. pp. 247-260.
Pandita, D. 2022. Plant growth promoting bacteria (PGPB):
Applications and challenges in bioremediation of metal and metalloid
contaminated soils. In Metals Metalloids Soil Plant Water Systems, edited
by Aftab, T. & Hakeem, K. Massachusetts: Academic
Press. pp. 485-500.
Sadeq, B.M., Zuan, K., Tan, A., Kasim, S., Yun, W.M., Othman, N.M.I., Alkooranee,
J.T., Chompa, S.S., Akter,
A. & Rahman, M.E. 2023. Humic acid-amended
formulation improves shelf-life of plant growth-promoting rhizobacteria (PGPR) under laboratory conditions. Pertanika Journal of Science & Technology 31(3): 1137-1155.
Sharma,
I.P., Chandra, S., Kumar, N. & Chandra, D. 2017. PGPR: Heart of soil and their role in soil
fertility. In Agriculturally Important Microbes for Sustainable
Agriculture, edited by Meena, V., Mishra, P., Bisht, J. & Pattanayak, A.
Singapore: Springer. pp. 51-67.
Savarese, C., Cozzolino, V., Verrillo, M., Vinci, G., De Martino, A., Scopa, A. &
Piccolo, A. 2022. Combination of humic biostimulants with a microbial inoculum improves lettuce
productivity, nutrient uptake, and primary and secondary metabolism. Plant
and Soil 481: 285-314.
Shankar, A.B. &
Kaushik, P. 2022. Visiting sweet potato from a breeding perspective: An update. PrePrints 2020: 2022040149.
Tang, C., Cheng, K.,
Liu, B., Antonietti, M. & Yang, F. 2022.
Artificial humic acid facilitates biological carbon
sequestration under freezing-thawing conditions. Science of The Total
Environment 849: 157841.
Thomas, G.W. 1983. Chapter 9. Exchangeable cations. In Methods of Soil
Analysis: Part 2 Chemical and Microbiological Properties, edited by Page,
A.L. Madison: American Society of Agronomy, Soil Science Society of America. pp.
159-165.
Wang, D., Chen, X.,
Tang, Z., Liu, M., Jin, R., Zhang, A. & Zhao, P.
2022. Application of humic acid compound fertilizer
for increasing sweet potato yield and improving the soil fertility. Journal
of Plant Nutrition 45(13): 1933-1941.
Wu, Y., Li, S. & Chen, G. 2020. Impact of humic acids on phosphorus retention and transport. Journal of Soil Science
and Plant Nutrition 20: 2431-2439.
Yang,
F., Tang, C. & Antonietti, M. 2021. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chemical
Society Reviews 50(10): 6221-6239.
Yasmin, F., Othman, R. & Maziz, M.N.H.
2020. Yield and nutrient content of sweet potato in response of plant
growth-promoting rhizobacteria (PGPR) inoculation and
N fertilization. Jordan Journal of Biological Science Jordan 13:
117-122.
Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S.T., Tian, Y., Zhu, Y. & Liu, X. 2016.
Optimal leaf positions for SPAD meter measurement in rice. Frontiers in
Plant Science 7: 719.
Zeng, Q., Ding, X., Wang, J., Han, X., Iqbal, H. & Bilal, M. 2022.
Insight into soil nitrogen and phosphorus availability and agricultural
sustainability by plant growth-promoting rhizobacteria. Environmental
Science and Pollution Research 29: 45089-45106.
Zhao, C., Liu, G.,
Chen, Y., Jiang, Y., Shi, Y., Zhao, L., Liao, P., Wang, W., Xu, K., Dai, Q.
& Huo, Z. 2022. Excessive nitrogen application
leads to lower rice yield and grain quality by inhibiting the grain filling of
inferior grains. Agriculture 12(7): 962.
Zhu, F. & Sun, J. 2019. Physicochemical and sensory properties of
steamed bread fortified with purple sweet potato flour. Food Bioscience 30:
100411.
Zilaie, M.N., Arani, A.M., Etesami, H., Dinarvand, M. & Dolati, A. 2022. Halotolerant plant growth-promoting rhizobacteria-mediated alleviation of salinity and dust
stress and improvement of forage yield in the desert halophyte Seidlitzia rosmarinus. Environmental
and Experimental Botany 201: 104952.
*Corresponding author; email: tkz@upm.edu.my
|